A dynamic inequality generation scheme for polynomial programming
نویسندگان
چکیده
Hierarchies of semidefinite programs have been used to approximate or even solve polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small size. In this paper, we propose a dynamic inequality generation scheme to generate valid polynomial inequalities for general polynomial programs. When used iteratively, this scheme improves the bounds without incurring an exponential growth in the size of the relaxation. As a result, the proposed scheme is in principle scalable to large general polynomial programming problems. When all the variables of the problem are non-negative or when all the variables are binary, the general algorithm is specialized to a more efficient algorithm. In the case of binary polynomial programs, we show special cases for which the proposed scheme converges to the global optimal solution. We also present several examples illustrating the computational behavior of the scheme and provide comparisons with Lasserre’s approach and, for the binary linear case, with the lift-and-project method of Balas, Ceria, and Cornuéjols.
منابع مشابه
An Iterative Scheme for Valid Polynomial Inequality Generation in Binary Polynomial Programming
Semidefinite programming has been used successfully to build hierarchies of convex relaxations to approximate polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small sizes. We propose an iterative scheme that improves the semidefinite relaxations without incurring exponential growth in their size. The key ingredient is a dyn...
متن کاملImproved approximation of the general soft-capacitated facility location problem
The Soft-Capacitated Facility Location Problem, where each facility is composed of a variable number of fixed-capacity production units, has been recently studied in several papers, especially in the metric case. In this paper, we only consider the general problem where connection costs do not systematically satisfy the triangle inequality property. We show that an adaptation of the set coverin...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملApproximation Algorithms for Knapsack Problems with Cardinality Constraintsy
We address a variant of the classical knapsack problem in which an upper bound is imposed on the number of items that can be selected. This problem arises in the solution of real-life cutting stock problems by column generation, and may be used to separate cover inequalities with small support within cutting plane approaches to integer linear programs. We focus our attention on approximation al...
متن کاملAn Advanced LMI-Based-LQR Design for Load Frequency Control of an Autonomous Hybrid Generation System
This paper proposes a load frequency control scheme for an autonomous hybrid generation system consisting of wind turbine generator (WTG), diesel engine generator (DEG), fuel cell (FC), aquaelectrolyzer (AE) and battery energy storage system (BESS). In wind power generation systems, operating conditions are changing continually due to wind speed and load changes, having an effect on system freq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 156 شماره
صفحات -
تاریخ انتشار 2016